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The dynamics of the distorted cholesteric director is studied in a complex matrix, such as mesogenic and
istotropic polymer networks, by means of dynamic light scattering. We employ polymer-stabilized cholesteric
diffraction gratings as our system to measure thermal flutuations of the cholesteric director in photostabilized
low-molecular-weight polymer networks. The relaxation rates of fast and slow dynamical modes of the dis-
torted cholesteric directors are measured in two scattering geometries, where the scattering vector is either
parallel or perpendicular to the helical axis. The dispersion relations for fluctuation wave vectors along the
helical axis are found to be fundamentally different for the two types of polymer networks. Experimental
dispersion curves are in agreement with the theoretical predictions developed in the present paper. A possible
understanding of dispersion in distorted cholesterics is developed and the experimental results for polymer
stabilized cholesteric diffraction gratings are presented in this report. We also discuss the coupling of a slow
relaxation mode of distorted cholesterics in a mesogenic versus isotropic polymer network.
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I. INTRODUCTION

There is an increasing interest in cholesteric liquid crys-
tals due to their helicoidal periodic structures in materials
science involving photonic band-gap materials �1–3� and in
the structure and dynamics of biological membranes �4� and
biofunctional surfactants in complex media �5�. Furthermore,
polymer-stabilized cholesteric diffraction gratings are
electro-optical switching devices that incorporate highly dif-
fractive optical elements. The dynamical mode of the choles-
teric director has been described by de Gennes and Prost for
an ideal helix �6� and developed by Meyer for distorted cho-
lesteric structures by an external field �7�. Director structures
of cholesteric diffraction gratings are simulated by Shiy-
anovskii et al. �8�. The details of the preparation and mor-
phology of polymer-stabilized cholesteric diffraction gratings
are discussed in Refs. �9,10�, and the difference of optical
morphologies of cholesterics in mesogenic versus isotropic
polymer networks is also shown in Ref. �11�. In this report,
we discuss the relaxation behavior of the distorted choles-
teric director in polymer-stabilized networks with dynamic
light scattering. Two scattering geometries are used for prob-
ing the thermal fluctuations of the cholesteric director. We
also use mesogenic versus isotropic type of monomers to
investigate their polymer-wall anchoring effect on the cho-
lesteric liquid-crystal host. Therefore, we address the disper-
sion of the director modes of distorted cholesteric in complex
polymer networks and possible confinement effects of poly-
mer walls.

II. EXPERIMENTS

A. Samples

Cholesteric liquid crystals are prepared by adding the chi-
ral dopant Merck R-1011 to the commercial nematic liquid
crystal Merck BL006 �nematic-isotropic transition range
�113 °C�. We used two different types of diacrylate mono-
mers in low concentration ��3 wt % �: the reactive me-
sogenic monomer Merck RM257 and the isotropic monomer
HDDA. A small amount of photoinitator Irgacure 651 �Ciba
Additives� was mixed in at 5 wt % of the monomer concen-
tration �or 0.15–0.25 wt % of the mixture� in order to facili-
tate the polymerization reaction. HDDA is isotropic at room
temperature, and RM257 has the phase sequence crystal-
�70 °C�-nematic-�120 °C�-isotropic. All compounds are
mixed until each component dissolves uniformly and thor-
oughly by either a mechanical rotation with a “thermister”
�type 16700 mixer� or solvent method. The photostabiliza-
tion is done by a UV lamp at 365 nm wavelength and
0.04 mW/cm2 for 30 min. The mixture of planar polymer-
stabilized gratings is BL006, 7.5 wt % of chiral dopant and
3 wt % reactive monomer �RM257 and HDDA�. For a ho-
meotropic boundary condition of the cholesteric sample, the
mixture is BL006, 11 wt % of chiral dopant. In order to be
able to perform dynamic light scattering, it is important to
achieve a pitch that is comparable to the wavelength of the
incident beam. Both the mesogenic and isotropic polymer-
stabilized cholesteric diffraction gratings have a 2� pitch of
approximately 2.4 �m. Homemade cells with �3-�m spac-
ers were used in place of commercial electro-optic cells. An
applied electric ac field of 3–4 V, and frequency �1 kHz
was used to form the initial polymer-stabilized cholesteric
diffraction grating texture in the narrower cells. The texture
was stabilized over the full 25�25 mm2 area of the cell
using a UV lamp, collimating lens, and a bandpass filter
�365 nm center, 10 nm full width at half maximum
�FWHM��. The optical texture of the homeotropic cholesteric
has a 2� pitch of approximately 3.3 �m, and the substrate
separation is �5 �m.
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B. Scattering geometries

For an optically isotropic sample, the incident and scat-
tered vectors have the same length, but differ in a birefrin-
gent sample. However, as long as the optic axis is uniform in
the birefringent case, but the fluctuations are not confined.
The connection between the spectrometer parameters ki and
kf and the sample fluctuation wave vecotor q can be given by
q=kf −ki. Thus, by controlling the scattering geometry, one
normally selects scattering from a specific fluctuation wave
vector. Varying this and recording the time correlation func-
tion of the scattered intensity then allows to measure the q
dependence or dispersion of the relaxation rates �damping
constants� of the overdamped fluctuations. Two scattering
geometries are used for probing the wave vector dependence
of distorted cholesterics, shown in Fig. 1. We will take y as
the substrate normal and x as the grating axis. Furthermore,
the primed angles �� refer to the laboratory frame while the
unprimed � refers to inside the sample. In scattering geom-
etry 1, where the grating axis is in the scattering plane, the
components of the scattering vector can be expressed as

kx
2 = �2�

�0
�2

�ns sin �s + ni sin �i�2 = �2�

�0
�2

�sin �s� + sin �i��
2,

ky
2 = �2�

�0
�2

�ns cos �s − ni cos �i�2

= �2�

�0
�2

��ns
2 − sin2 �s� − �ni

2 − sin2 �i��
2,

kz
2 = 0. �1�

On the other hand, the grating axis is perpendicular to the
scattering plane for scattering geometry 2, where kx

2=0, and
the other scattering vector components are given by

ky
2 = �2�

�0
�2

��ns
2 − sin2 �s� − �ni

2 − sin2 �i��
2,

kz
2 = �2�

�0
�2

�sin �s� + sin �i��
2,

where ni and ns are indices of refraction for the polarization
of the incident light and of the scattered light, respectively.
Then we chose depolarized orthogonal orientations of direc-

tor scattering as the incident polarization î perpendicular to
the scattering plane and the polarization of the detected light

f̂ in the scattering plane.

C. Dynamic light scattering setup

The light source is a symmetric TEM00-mode HeuNe
laser �a Spectra-Physics model 127 rated at 35 mW�, and the
laser power at the sample was approximately 5 mW. The
laser power was continuously monitored by a photodiode,
and all measurements were normalized to eliminate effects
due to power drift. The incident and scattering angles were
varied by placing the sample on a two-stage, manually ad-
justed goniometer. Various translation stages allowed us to
center the illuminated volume on the rotation axis and to
vary the position of the illuminated spot on the sample. We
choose the focal length of the entrance lens and the design of
the collection apertures as much as possible into a single �or
a few� coherence areas. For a given scattering geometry, we
may think of the scattering process as diffraction from a
transient grating with wave vector q and size comparable to
the illuminated sample size d �controlled by the entrance
lens�. The angular width of the central peak in the diffraction
pattern in this case is sin �	� /d, which defines a coherence
angle �. In our scattering experiment, the incident beam was
focused to roughly 150 �m at the sample, and several coher-
ence areas were collected. The pulse width out of the PAD is
typically 5–10 nsec, but in the autocorrelation experiment,
the measuring time correlation between pulses generated is
the limiting to the photomultiplier tube �PMT� dead time
��100–200 nsec�. We used a PMT module �Electron Tubes
model P30CWAD5F�, designed for single-photon counting
and low dark count ��25 cps�, and the tube had internal
circuits built in the PAD for generating a 1.6-kV operating
voltage. For our studies, autocorrelation is adequate for the
fluctuations of interest in cholesteric director fluctuations,
which are on the msec time scale. Three different correlators
were used: The first was an instrument designed and con-
structed by Dr. A. Baldwin at Kent State. This instrument
computes 
I�0�I�t�� according to the following set of delay
time t−10 consecutive channels at 50 nsec, 100 �sec spac-
ing in fast and slow channels. The other two correlators are
commercial instruments: The BI9000 from Brookhaven In-
struments has a flexible delay time layout, and we used the

FIG. 1. The schematic drawings of the two scattering geom-
etries: �a� scattering vector k=kx, along the helical axis in the scat-
tering plane for scattering geometry 1, and �b� scattering vector k
=kz, perpendicular to both the helical axis and the scattering plane
for scattering geometry 2. The y direction is along the substrate
normal and the x direction along the helical axis. The arrows i and
f represent the initial and final polarizations, respectively. The
primed angles ���� refer to the laboratory frame with the subscript i
and s referring to “incident” and “scattered” light, respectively. To
avoid strongly scattered diffraction peaks, we kept the � angle at
approximately 10° in scattering geometry 1 in �a�.
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following set: over 10 decades, dynamic range
25 nsec/1310 sec. The Flex 2K-12Dx2 from Flexible Instru-
ments has a fixed layout: 36 groups of 8 bins �288 bins total,
dynamic range from 12 nsec to 3200 sec�. We also used a
temperature-controlled stage with a homemade oven with
optical access of 0–70° for the scattering angle and 0–45° for
the incident angle. The oven was heated by passing a current
through a resistive foil heater, which was regulated by a stan-
dard bridge circuit with closed loop feedback designed by
Professor J. D. Litster of MIT. A thermistor �100 k	 at
25 °C� was used as the control element in the bridge circuit,
and the temperature could be set either by a precision resistor
decade box or by an external sweep voltage. A calibrated
ultrastable thermistor �125 k	 at 25 °C, Thermometrics�
was used to measure temperature. The measurement ther-
mistor was placed just under the outer glass surface of the
sample cell. The short-term stability of our oven was
�10 mK over �5 min; �50 mK stability was obtained over
�5 h. The operating range was 25–125 °C. For each scat-
tering geometry, correlation functions have been collected as
a function of temperature using the LABVIEW software �Na-
tional Instruments� to control the correlator, set the tempera-
ture through a 16-bit digital-to-analog converter �DAC� used
to sweep the temperature controller output and to monitor the
temperature through a 5– 1

2-digit multimeter �Keithley model
197A�, which measured the voltage drop associated with a
constant current of 1 �A passing through the measurement
thermistor.

III. DIRECTOR FLUCTUATIONS IN CHOLESTERICS

The dynamical properties of cholesteric director fluctua-
tions are described for the fluctuation wave vector q by de
Gennes and Prost �6�, depending on the director mode that is
“umbrella” like or “twisting” around the helical axis. The
cholesteric director vector field is defined as each angular
rotation v and u, for “umbrella” like or “twisting,” respec-
tively. When the helical axis is assumed along the x direc-
tion, one can express the cholesteric director vector field as

nx = sin v ,

ny = cos v cos�q0x + u� ,

nz = cos v sin�q0x + u� . �2�

Assuming only the fluctuating components of n are contrib-
uting to the dielectric tensor for an optically uniaxial medium
with anisotropy 
a=
�−
�, the fluctuating components of
the dielectric tensor are


 = 
�I + 
ann ,

�
y,z = �
z,y = 
a�ny
0�nz + nz

0�ny� = 
au cos�2q0x� ,

�
x,y = �
y,x = 
any
0�nx = 
av cos�q0x� ,

�
x,z = �
z,x = 
anz
0�nx = 
av sin�q0x� . �3�

The Fourier transforms of these fluctuating components with
respect to a scattering vector k are

�
y,z�k� =

a

2
�u�k + 2q0� + u�k − 2q0�� ,

�
x,y�k� =

a

2
�v�k + q0� + v�k − q0�� ,

�
x,z�k� =

a

2i
�v�k + q0� − v�k − q0�� . �4�

Since the dielectric tensor is spatially modulated due to the
helicoidal director structure, the scattering vector k probes
the fluctuations with wave vector q=k±nq0, where n=1 for
the “umbrella” mode �v�, and n=2 for the “twisting” mode
�u�, and q0=q0x̂. We probe scattering vectors k along �k
=kxx̂� and perpendicular to the helical axis k=k�=q�.

A. Cholesteric director along the helical axis (for a scattering
vector k=kxx̂)

We have a thermal fluctuation wave vector q=kxx̂±nq0x̂
qxx̂ and qy =qz=0. The elastic free energy density is then
expressed as

�F�r� =
K1

2
� �u

�z
cos q0x −

�u

�y
sin q0x +

�v
�x
�2

+
K2

2
� �u

�x
+

�v
�y

sin q0x −
�v
�z

cos q0x�2

+
K3

2
�� �u

�y
cos q0x +

�u

�z
sin q0x + q0v�2

+ � �v
�y

cos q0x +
�v
�z

sin q0x�2� �5�

to quadratic order in the fluctuations u=u�r� and v=v�r�.
Taking the Fourier transform to q space and setting qy =qz
=0, we find a much simpler expression,

�F�qx� =
1

2
K2qx

2u2 +
1

2
�K1qx

2 + K3q0
2�v2, �6�

where u=u�qx� and v=v�qx�, already in diagonal form, so
that u and v individually correspond to the normal fluctua-
tion modes of the cholesteric director. Applying the equipar-
tition theorem gives


�u�qx��2� =
kBT

K2qx
2 ,


�v�qx��2� =
kBT

K3q0
2 + K1qx

2 , �7�

for the mean-square fluctuation amplitudes. The relaxation
rates � of the normal modes can be determined from the
phenomenological dynamical equations

− 1
�u

�t
=

��F�qx�
�u

,
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− 2
�v
�t

=
��F�qx�

�v
, �8�

where 1 and 2 are damping parameters that incorporate the
various viscosity coefficients in the system. Using Eq. �6� to
evaluate the right-hand side of Eq. �8� and then taking a time
dependence of the form u ,v and e−�ut , e−�vt, respectively, we
obtain

�u�qx� =
K2qx

2

1
,

�v�qx� =
K3q0

2 + K1qx
2

2
. �9�

The fluctuation amplitudes may then be written as


�u�2� = kBT�1�u�−1,


�v�2� = kBT�2�v�−1, �10�

so that the amplitude is largest when the relaxation rate is
smallest and slow fluctuations give rise to strong scattering.
We may express the relaxation rates in terms of the scattering
vector as the normal modes of an acousticlike or gapless
��u�qx→0�→0� “twisting” mode �u� and an opticlike or
gapped ��v�qx→0�→ finite� “umbrella” mode �v�:

�u�kx� =
K2�kx ± 2q0�2

1
,

�v�kx� =
K3q0

2 + K1�kx ± q0�2

2
. �11�

B. Cholesteric director perpendicular to the helical axis
(for a scattering vector k=k�=q�)

Here the calculation of the normal modes is considerably
more complicated. A detailed analysis was carried out by
Lubensky �12� for the case where q� is small compared to q0
�e.g., a short pitch helix�. Carrying out a perturbative calcu-
lation in the parameter q� /q0, Lubensky found the normal
modes

�+ = u +
q�

q0
v + O�q�

q0
�2

,

�− = v −
q�

q0
u + O�q�

q0
�2

, �12�

with relaxation rates given in terms of the scattering vector
k� by

�+�k�� =
4K2q0

2

1
+

K+
�1�q0

2

1
� k�

q0
�2

+
K+

�2�q0
2

1
� k�

q0
�4

+ O� k�

q0
�6

,

�−�k�� =
�K1 + K3�q0

2

2
+

K−
�1�q0

2

2
� k�

q0
�2

+
K−

�2�q0
2

2
� k�

q0
�4

+ O� k�

q0
�6

, �13�

where K+ and K− are combinations of ordinary nematic elas-
tic constants K1, K2, and K3. Note that these relaxation rates
match up with �u and �v in Eq. �11� when k=0 �or kx=k�

=0�. Let us notice when q�=k��0, the normal modes are
linear combinations of the “umbrella” and “twisting” modes.
However, for q�→0, the normal modes reduce to pure u and
v as found for the case of fluctuations along the helical axis
�i.e., for qx�0,q�=0�. Thus, we can use the normal modes
of �+ and �− for general thermal fluctuations q and express
the dielectric fluctuations in Eq. �3� in terms of these modes
as

�
y,z�k� =

a

2
��+�k ± 2q0� −

k�

q0
�−�k ± 2q0�� ,

�
x,y�k� =

a

2
��−�k ± q0� +

k�

q0
�+�k ± q0�� ,

�
x,z�k� =

a

2i
��−�k ± q0� +

k�

q0
�+�k ± q0�� . �14�

The scattering vector dependence of the relaxation rates �+
and �− contains quartic �and higher� corrections when k�

�0. As pointed out by Lubensky �12�, this result occurs
because of a remarkable cancellation of terms in the elastic
free energy involving fluctuations in one of the components
�u ,v� of the �+ mode in one “Brillouin” zone �e.g.,
�−q0 ,q0�� and fluctuations of the other component in a neigh-
boring zone. The schematic drawings of relaxation rates �±
are plotted in Fig. 2 as functions of kx and k�: For kx �in Fig.
2�a��, the plots are parabolas with the minima shifted away
from kx=0 due to an effect of the modulated or helicoidal
structure along x. However, for k� �in Fig. 2�b��, the minima
are at k�=0, and there are possibly observable quartic cor-
rections for large k�. It suggests that the scattering vector
defined by the experimental geometry and thermal fluctua-
tion wave vector that is intrinsic to the system are the same
for fluctuations off the helical axis �q�=k��, but differ
modulo q0 for fluctuations along the axis �qx=kx±nq0�.

FIG. 2. The predicted dispersion relations of fast relaxation �−

and slow relaxation �+ at kx=q0 in an “ideal” cholesteric helix as a
function of scattering vector: �a� in scattering geometry 1 �k=kxx̂�
and �b� in scattering geometry 2 �k=k�=kz=q��.
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IV. DIRECTOR FLUCTUATIONS IN DISTORTED
CHOLESTERICS

The director configuration is not a uniform sinusoidal he-
lix due to a distorted helical state in the polymer-stabilized
cholesteric diffraction gratings. The applied electric field re-
orients an initially undistorted helix, and the helical structure
is somewhat distorted. The conceptual order and frustration
in chiral liquid crystals are conclusively discussed by Ka-
mien and Selinger �13�. In experiment, the relaxation modes
of pure cholesteric and polymer-stabilized cholesteric liquid
crystals are measured including the twist deformation �14�.
We tested the helical distortion with a homeotropic choles-
teric that has the helical twist extending in two directions:
both along and perpendicular to the substrates. Since the he-
lical twist along either direction is no longer describable by a
pure sinusoidal, the generalization of the director can be then
written as the sum of various fluctuating components. The
corresponding generalization for the equilibrated and fluctu-
ating components of director can be described as

nx
0 = 0,

ny
0 = �

n

ayn cos�nq0x + �yn� ,

nz
0 = �

n

azn sin�nq0x + �yn� ,

�nx = v ,

�ny = − u�
n

ayn sin�nq0x + �yn� ,

�nz = u�
n

azn cos�nq0x + �zn� . �15�

An ideal helix is unconstrained at the bounding surfaces,
corresponding to ay1=az1=1, �y1=�z1=0, and ayn=azn=0
for n�1. Then the relation between the fluctuation wave
vector and the scattering vector in terms of �+ and �− is

�
y,z =

a

2 �
n,n�

aynazn��e±i�nn��+�k ± �n + n��q0�

−
k�

q0
e±i�nn��−�k ± �n + n��q0�� ,

�
x,y =

a

2 �
n

ayn�e±i�yn�−�k ± nq0� +
k�

q0
e±i�yn�+�k ± nq0�� ,

�
x,z =

a

2i
�

n

azn�e±i�zn�−�k ± nq0� +
k�

q0
e±i�zn�+�k ± nq0�� ,

�16�

where �nn��y,n−�z,n�.
In dynamic light scattering, the decay of the measured

time correlation function of the scattered intensity,

I�k ,0�I�k , t��
�
is

* �k ,0��
is�k , t��2, will no longer correspond

to a pair of pure exponential decays for normal modes of �+
and �−, but instead to a pair of broadened �or stretched�
exponentials. This has the form �15�


I�k,0�I�k,t�� = �A+�k�e−��+�k�t�s+ + A−�k�e−��−�k�t�s−�2 + B�k� ,

�17�

where s± denotes exponents less than 1 that effectively
spread the decays of the �+ and �− modes over more than
one fluctuation wave vector. The stretched exponential form
has been extensively used in light scattering studies of poly-
mer dynamics �where the broadening comes from a distribu-
tion of chain lengths or molecular weights� �16,17�. There-
fore, the decay of the measured correlation function

I�k ,0�I�k , t�� for a specific k will then contain contributions
from the fluctuations at q=k±nq0 for the additional values of
n. The mixing-in of these additional fluctuations could also
contribute to the stretching of the exponential decays when
the scattering vector has a component along the helical axis
�k=kx�. In Fig. 3�a�, the coupling of neighbor modes to ad-
ditional n will modify the measured behavior of the relax-
ation rates �± from that predicted for the distorted cholesteric
state. The behavior of the relaxation rates �+ and �− for
scattering along the helical modulation axis �x� is quite dif-
ferent from that expected for an undistorted cholesteric. In
particular, the overall minima in �+ and �− occur for kx
→0; �+ appears to be nearly gapless ��+→0� at kx=0. How-
ever, local minima are observed in �+ and �− at the same
scattering vector kx=2q0=3.8 �m−1 and possibly weakly in
�− at kx=q0	1.9 �m−1. The observed features in the disper-
sion are in fact more consistent with the model in Fig. 3�b�,
in which the effect of a distortion with a significant uniform
component to the director configuration was considered. In-
deed, the lowest-energy twist distortions of the ideal helix
come from the n=0 �uniform� and n=2 terms in Eq. �15�.
�The n=1 term describes an undistorted helix, which has
zero elastic energy.� The distortion terms contribute a twist
elastic energy density that scales as

K2�nz
0�ny

0

�x
− ny

0�nz
0

�x
+ q0�2

K2�n − 1�2q0
2,

which is lowest �except for n=1� when n=0,2. A significant
presence of these terms then implies from Eq. �10� that
strong scattering can be expected from the modes �±�kx�,
with minimum relaxation rate �± �and correspondingly large
amplitude� at kx=0—whose effect is shown in Fig. 3�a� and
from �−�kx−2q0� with minimum �− �and large amplitude�
centered at 2q0, in addition to the modes �+�kx−2q0� and
�−�kx−q0� expected for an undistorted helix. The solid lines
in Fig. 3�b� represent the fits of the relaxation rates �± to the
predictions, for qx=kx±nq0 �n=0, 1, or 2� and for ranges of
the scattering vector kx restricted around the appropriate lo-
cal minima �0, q0, or 2q0�. Clearly, the latter fits are inad-
equate, and the best model for the data corresponds to a
significantly distorted helical structure, with the n=0 and n
=2 terms in the harmonic expansion for n �Eq. �15�� being
prominent.
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From the typical data for the correlation function

I�k ,0�I�k , t��, together with fits to various exponential de-
cays for the specific geometry, �i�=0, �s�=58, and k	kx
=8.4 �m−1, we have found a good fit to the data by allowing
for a spread in the relaxation rates of the modes via a
stretched exponential decay due to the effect of distortion.
This can be achieved by stretching only the slower mode

��+�—i.e., fixing s−1 and varying s+. The residuals for this
fit are now comparable to the statistical noise in the shortest
time channels, and no further improvement could be
achieved by independently stretching both modes. From our
fitting we find s+=0.70–0.75 for all values of kx over the
range 0.5–9 �m−1 probed. From a similar fitting of the cor-
relation data for different combinations of �i�, �s�, the result is
shown in Fig. 3�b�. The special scattering vectors kx=q0
=1.9 �m−1 and kx=2q0=3.8 �m−1, which correspond to 2�
and 4� variations in the phase of the director, are also indi-
cated.

V. DISTORTED CHOLESTERICS IN A MESOGENIC
VS ISOTROPIC POLYMER NETWORK

The distorted cholesterics in a polymer-containing matrix
is unlike the case of a pure cholesteric confined between
homeotropic substrates. The main agent causing distortion of
a simple cholesteric structure in polymer-stabilized samples
is an applied electric field that reorients the helical structure
from a “normal” state �helical axis normal to substrates
treated for homogeneous alignment that minimize distortion
when the cell thickness�helical pitch� to a “fingerprint”
state �significant component of the helical axis in the sub-
strate plane�. The internal polymer network in polymer-
stabilized samples locks in this fingerprint state. The differ-
ence between the polymer network morphologies for
mesogenic RM257 and isotropic HDDA networks is shown
with the anchoring of polymer walls to the cholesteric direc-
tor �10,11�. The RM257 network shows a high degree of
spatial patterning and a highly orientationally ordered fibril
structure extending across the sample thickness. By contrast,
the HDDA network shows relatively weak spatial patterning
and no clear orientational order of the fibrils—in fact, it ap-
pears that the network structure has collapsed onto the sub-
strate when the cell was opened for Scanning tunneling mi-
croscopy �SEM�. In addition to the impact on the scattering
due to distortion of the pure helical state, the polymer net-
work will introduce qualitatively new effects: One of these is
the possibility of a slow relaxational mode arising from local
motion of polymer fibrils not completely frozen into the
large, rigid bundles, consequently coupled to the surrounding
liquid crystal, inducing slow director fluctuations and thus
fluctuations of scattered light intensity because of the dielec-
tric contrast between the polymer and liquid crystal. We
would expect this “polymer mode” to contribute a signifi-
cantly stretched exponential decay due to the polydispersity
in fibril size in the measured time correlation function of the
scattered intensity. Another potential consequence of the
polymer network is more interesting—namely, the possibility
of a patterned distribution of dense, narrowly spaced poly-
mer walls producing a confinement effect on the director
fluctuations between the walls. The controllable, orienta-
tional templating effect of the liquid crystal host on the de-
veloping network during polymerization presents a unique
method for tailoring anchoring conditions in a confined
liquid-crystal system. A phenomenological model is pre-
sented by Crawford and co-workers in polymer-stabilized
nematic liquid crystals, where polymer fibrils from the direc-

FIG. 3. �a�: Predicted dispersion as a function of scattering vec-
tor along the helical axis �k=kx� of a distorted cholesterics contain-
ing significant amplitudes for n=0 and n=1, and n=2 terms in Eq.
�19�. By contrast, for an undistorted cholesterics we expect overall
minima at kx=2q0 for slow relaxation �+ and at kx=q0 for fast
relaxation �− �see in Fig. 2�a���. �b�: Experimental dispersion of
both for slow relaxation �+ and fast relaxation �− rates as a function
of scattering vector along the helical axis �k=kx� of a distorted
cholesterics. The special scattering vectors kx=q0=1.9 �m−1 and
kx=2q0=3.8 �−1, which correspond to 2� and 4� variations in the
phase of the director, are also indicated.
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tor domains are constrained with a finite anchoring energy
�18,19�.

In this report, we propose a possible model of confine-
ment effects to distorted cholesterics: Suppose the scattering
from a stack of nematic slabs confined between two rigid
substrates with separation Lx and treated for strong homoge-
neous anchoring at the surfaces. We shall also assume the
sample is effectively unbounded in the y and z directions.
The scattered intensity for scattering vector k is given by


I�k,t�� = � E0�2

4�c2R
�2���

Vscatt

e−ik·r
if�r,t�dr�2� , �18�

where


if�r,t� = 
0,if + �
�r,t� = 
0,if + �
q

eiq·r�
if�q,t� �19�

and E0 and � are the amplitude and frequency of the incident
electric field, R is the distance from the scattering �or illumi-
nated� volume Vscatt to the detector, and 
if is the detected
component of the dielectric tensor. The angular brackets rep-
resent a time average over the photocurrent generated in the
detector. Then the integrals over y and z �the unbounded
directions� give


I�k � 0,t��

= � E0�2

4�c2R
�2

N���
qx

�
if�qx,ky,kz,t�
sin�qx − kx�Lx/2

�qx − kx�Lx/2
�2� ,

�20�

where N represents the number of nematic slabs in the stack
that are illuminated. The fluctuations in two different slabs
are assumed to be uncorrelated �i.e., the substrates or walls
isolate the slabs�. In our actual experiments, the slabs have
submicron thickness, so that typically �100 slabs are illumi-
nated. The uniform part of the dielectric tensor 
0,if only
contributes to scattering in the forward direction �k=0� and
therefore does not appear in Eq. �20�. Due to the fixed
boundary conditions at the slab surfaces, the fluctuation
wave vector component qx takes on discrete values n� /Lx,
where n= ±1, ±2, . . .. Putting this into Eq. �19� we finally
obtain


I�k � 0,t�� = � E0�2

4�c2R
�2

N �
m,n�0


�
if
* �m�/Lx,ky,kz,t�

��
if�n�/Lx,ky,kz,t��

�
sin�m� − kxLx�/2

�m� − kxLx�/2
sin�n� − kxLx�/2

�n� − kxLx�/2
. �21�

This result exposes a potentially interesting consequence of
confinement on the scattering. We see that when the slab
thickness is comparable to the optical length scales probed in
the experiment �so that the integral �−Lx/2

Lx/2 ei�qx−kx�xdx that is
encountered after substituting Eq. �19� into Eq. �18� is not
effectively a � function�, the scattering vector need not
match any fluctuation-mode wave vector, and several modes
can contribute to the scattering for fixed kx. However, the
oscillating function on the bottom line of Eq. �21� is sharply

peaked around kx=n� /Lx=m� /Lx, so when kx�� /Lx �or
kx�−� /Lx�, only the term n=m=1 �or n=m=−1� contrib-
utes significantly in the sum. Consequently, for −� /Lx�kx
�� /Lx and ky =kz=0, the scattering essentially comes only
from the fluctuations with �kx�=� /Lx. This means that the
dispersion of the relaxation rates associated with the con-
fined fluctuations will flatten or be “cut off” inside scattering
vector �kx�� /Lx—i.e., ��kx� will become approximately con-
stant in kx. In the case of an acousticlike fluctuation that is
gapless at kx=0 in a bulk sample �e.g., ��kx�Kkx

2 /�, a gap
will appear in the confined sample �e.g., ��kx→0�
→K�� /Lx�2 /�. Physically, one can say that longer-
wavelength fluctuations get “cut off” by the combination of a
narrow spacing between confining walls and the surface an-
choring conditions. On the other hand, when �kx��� /Lx,
higher-fluctuation wave vectors �n, m�1 or n, m�−1� are
significantly sampled and ��kx� begins to increase. The ini-
tial increase can be shown to be roughly quadratic. Figure 4
shows a comparison of typical correlation functions for the
scattering geometry corresponding to geometry 1 �with k
=kx=9.25 �m−1� and geometry 2 �with k=kz�9.10 �m� of
cholesterics-stabilized with mesogenic �RM257� and isotro-
pic �HDDA� polymer networks. The striking feature of the
comparison is the broad slow tail present at longer delay

FIG. 4. Typical normalized intensity autocorrelation functions:
�a� for scattering geometry 1 at kx�9.25 �m−1 and �b� for scatter-
ing geometry 2 at kz�9.10 �m−1. Results are shown for two dif-
ferent types of polymer networks �using reactive mesogenic RM257
and isotropic HDDA� in a cholesteric liquid-crystal director. The
contribution from the amplitude of slow mode in a reactive me-
sogenic polymer network �RM257 in cholesterics� is dramatically
shown in the scattering geometry 1.
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times on the mesogenic RM257 network, relative to the flat
background observed for the pure cholesterics at similar de-
cay times. The broad, slow component of correlation func-
tions is the evidence of the “polymer” mode �and its cou-
pling to director fluctuations� predicted at the beginning of
the previous section. When we compared experimental re-
sults with several trial fitting functions, we found significant
improvements of fits using two �fast-slow cholesterics direc-
tor� modes and one stretched “polymer” mode. The reason
for this is that the distortion of an ideal helix within either a
mesogenic or isotropic polymer network can be coupled with
the slow mode of the cholesteric director fluctuations along
the helical axis. Interestingly the amplitude of the “polymer”
mode appears to be much pronounced when the scattering is
observed along the twist axes—i.e., for scattering geometry
1. However, for scattering geometry 2 �where scattering is
off the twist axis�, there is only one stretched “polymer”
mode. Thus the averaged scattered intensity fluctuation

I�k ,0�I�k , t�� is supplemented by an additional term

Ap�k�e−��̄p�k�t�sp, where the stretching exponent sp character-
izes the observed broad decay of the polymer mode
�sp�0.2�1�. Although isotropic HDDA data can be de-
scribed with no stretch mode of both fast-slow cholesterics
director modes �s+=s−=1�, the mesogenic RM257 data were
best fit with the slow mode �s+�0.7�, with a relatively “sup-
pressed” relaxation rate �6.0 sec−1� compared to an isotropic
HDDA network �6.0 sec−1�.

VI. EXPERIMENTAL RESULTS

A. Dispersion of relaxation rates of distorted cholesterics
in a mesogenic polymer network

The scattering vector dependence of the director mode of
relaxation rates �+ and �− of distorted cholesterics in a me-
sogenic �RM257� polymer network is plotted in Fig. 5. The
rates were extracted from the fits to the correlator data de-
scribed in the previous section. Let us first consider the dis-
persion for k=kx �along the grating axis in the optical tex-
ture�. For a scattering vector for kx�7 �m−1, which is
approximately 3 times the wave vector � /Lx�2.5 �m−1 cor-
responding to the spacing Lx between polymer walls, �+ and
�− increase in a roughly quadratic fashion. On the other
hand, as the bottom panel of the figure particularly shows,
for kx�7 �m−1 the relaxation rates are approximately flat
�independent of kx�, all the way down to the lowest kx where
we could reliably measure the correlation function. Further-
more, extrapolating �+ to kx=0 indicates a gap of about
150 sec−1 in the �+ director mode. Although the effect of
helical distortion for the homeotropic sample is to substan-
tially alter the kx dependence of the relaxation rates due to
coupling to branches of the dielectric fluctuations centered
on multiples of the helical wave vector other than n=1, the
dispersion in the homeotropic case is certainly not flat and
the acoustic mode does appear to extrapolate to zero relax-
ation rate at kx=0. Instead of being a pure effect of the cou-
pling to other fluctuation branches, the kx dispersion for the
mesogenic RM257 network has the additional features of
confined fluctuations discussed in the previous section—

specifically, a “cutoff” for smaller values of kx. In the case of
a confined cholesteric, the cutoff condition −� /Lx�kx
�� /Lx discussed in the previous section for a uniform nem-
atic becomes −� /Lx�kx−nq0�� /Lx for each separate
branch n of the dielectric fluctuations that contributes signifi-
cantly to the scattering. If we assume that the significant
branches are those that cost the least twist energy, n=0, 1, 2
�as was the case for the homeotropic cholesterics, the posi-
tive kx cutoff would be kx�2q0+� /Lx. Using q0
=� /optical pitch	2.5 �m−1 and Lx=1.2 �m, we get kx
=7.5 �m−1, which agrees well with the observed cutoff point
in Fig. 5.

Another interesting indication of a confinement effect in
the mesogenic RM257 network relative to the pure choles-
terics is the visualization of the slow fluctuations in the scat-
tered intensity around kx	2q0. This means the predicted
�kx−2q0�2 dependence of the relaxation rate for the �+ mode
that arises because of the twisted cholesteric structure. Spe-
cifically, very slow fluctuations should be observed for kx
	2q0, where the corresponding fluctuation wave vector qx
=kx−2q0 vanishes. However, none of the diffraction orders
observable in the RM257 network �including the zero-order,
undiffracted beam at kx=0� showed visibly slow fluctuations
surrounding the central spot—evidently small values of qx
are “cut off” in this case, which agrees with the expected
effect of the confinement and strong anchoring by the poly-
mer walls. For geometry 2, the dominant component is in the
direction parallel to both the polymer walls and the
substrates—i.e., the “unbounded” direction of our sample.
We then expect no confinement effect, and further, since the
scattering vector is now normal to the director modulation,
no effect due to coupling among different branches of the
dielectric fluctuations is observed. Indeed, this is what is

FIG. 5. Scattering vector dependence of relaxation rates for the
distorted cholesteric helix in a mesogenic RM257 network: The fast
mode ��−� and slow mode ��+� increase in a quadratic fashion for
scattering geometry 2. For scattering geometry 1, however, such a
quadratic dependence is only found for wave vectors kx�7 �m−1,
which is approximately 3 times the wave vector � /Lx�2.5 �m−1

corresponding to the spacing Lx between polymer walls. For kx

�7 �m−1 the relaxation rates in geometry 1 are approximately flat
or independent of kx �see the rectangular region inside figure� all the
way down to the lowest kx where we could reliably measure the
correlation function.
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observed. Both �+ and �− rise monotonically from kz=0, and
there is no flattening or secondary minima in their depen-
dence on kz. We also may expect a significant quartic contri-
bution to the dependence of �+ on kz in addition to the qua-
dratic term. In fact, as the fits demonstrate, a quadratic plus
quartic dispersion does seem to account for the curvature of
�+ and �− better than a pure quadratic term.

B. Dispersion of relaxation rates of distorted cholesterics
in an isotropic polymer network

Figure 6 is a plot of the dispersion of the modes obtained
for the isotropic HDDA network, and the results are quite
different from the case of the mesogenic RM257 network.
Both relaxation rates �+ and �− are approximately degener-
ate between the two scattering geometries k=kx and k=kz,
and described by a simple quadratic dependence on scatter-
ing vector k. It turned out that the isotropic HDDA morphol-
ogy does not appear nearly as efficient as the mesogenic
RM257 morphology in terms of capturing and anchoring the
electric-field-distorted state of the cholesterics. We propose
that in the HDDA case, the distorted state relaxes when the
electric field is removed and further into a state in which
there is a significant polydispersity in the orientation of the
local helical axis. This would be somewhat analogous to the
so-called “scattering state” of a polymer-stabilized cholester-
ics display �except that the d / p0 ratio in the latter is typically
much greater than 1�. Assuming a polydisperse distribution
of the twist direction, one would anticipate a much higher
degree of degeneracy in the director scattering along the two
directions kx and kz. For whichever is the case, we would not
expect significant spatial confinement effects on the fluctua-
tions in the isotropic HDDA network, which is more porous
and weakly orientationally ordered. Furthermore, if the local
helical structure has relaxed back to the lowest-elastic-
energy state �n=1 term in Eq. �14��, there would be no dis-

tortion effects of the type �unlikely described in the me-
sogenic RM257 network�, and this would explain the
absence of cholesterics distortion effects on the dispersion
and the lack of a need for a stretched exponential to describe
the correlation function in the HDDA case in Fig. 6.

C. Temperature dependence of the relaxation rates of distorted
cholesterics in a mesogenic vs isotropic polymer network

We also measured the temperature dependence of �+ and
�− for both mesogenic and isotropic polymer networks. The
samples are tested for scattering geometry 1 corresponding
to k=kx=4.5 �m−1, and their results are shown in Fig. 7,
where � is plotted on a semilogarithmic plot against the in-
verse of the absolute temperature. The range of temperature
is 25–115 °C or about 2.5 °C above the nematic-to-
isotropic transition in the pure cholesteric mixture. The plot
reveals an Arrhenius-type behavior, which is quite common
for viscosity coefficients =0 exp�E0 /kBT� associated with
director fluctuations in liquid crystals. We have fit our data
with �±=�±

0 exp�−E±
0 /kBT�, which gives �−

0 =5432 sec−1, E−
0

=2.21�10−13 erg and �+
0 =6836 sec−1, E+

0 =2.67�10−13 erg
for the isotropic HDDA network. For a mesogenic RM257
network, we have found �−

0 =4024 sec−1, E−
0 =2.10

�10−13 erg and �+
0 =1882 sec−1, E+

0 =2.13�10−13 erg. These
activation energies are probably related to the rotational vis-
cosity or molecular moment of inertia depending on the mo-
lecular shape, length scale, and temperature �20�. Reorienta-
tion of the cholesteric director in the polymer network is

FIG. 6. Scattering vector dependence of relaxation rates, fast
mode ��−� and slow mode ��+�, for the distorted cholesteric helix in
an isotropic HDDA network: Although the spacing Lx between
polymer walls is the same as � /Lx�2.5 �m−1 corresponding to
mesogenic RM257 network, the slow-mode relaxation rate �+ is
approximately degenerate or “overlapped” between the two scatter-
ing geometries, k=kx and k=kz, and is described by a simple qua-
dratic dependence on scattering vector k.

FIG. 7. Temperature dependence of fast-mode ��−� and slow-
mode ��+� relaxation in cholesteric liquid crystals: �a� for a me-
sogenic RM network and �b� for an isotropic HDDA network.
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somewhat slower—i.e., “suppressed”—as compared to than
pure twist cholesterics and reorientation of nematic liquid
crystals. Our results in Fig. 7 imply at most a weak tempera-
ture dependence of the elastic constants K over the range
studied. There is an absence of a clear anomaly in the tem-
perature dependence of � at the N*-I transition of the pure
liquid crystal, which probably indicates an upward shift in
the transition temperature of both the mesogenic and isotro-
pic networks in the cholesterics phase. It would be useful to
carry out measurements at higher temperature close to the
transition temperature.

VII. SUMMARY AND DISCUSSION

To close, we would like to comment on some possibilities
for future research such as the attractiveness of the polymer-
stabilized system for confinement studies, the combination of
spatial patterning with an orientational templating effect, and
the self-organization of not only a well-defined spatial array
of confining surfaces or walls, but also imparting a variable
degree of orientational order into these surfaces. We have
shown the dynamics of distorted cholesterics in both me-
sogenic and isotropic polymer networks with two scattering
geometries. The confinement can probe the crossover from
the confined direction to the “unbounded direction” by
choosing a “convenient” scattering geometry depending on
the system. In principle, the control of defining the confine-
ment matrix and spacing between walls, including the
strength of anchoring at the walls, can be tuned. However,

the main disadvantages of polymer-stabilized systems are the
complex director configuration, which significantly compli-
cates quantitative interpretation of the results, and the diffi-
culty in achieving defect-free distorted cholesterics templates
with submicron pitch. Ideally, one would like to vary the
confinement length scale from �0.2� to �4�, where � is a
convenient wavelength in the visible range �e.g., 0.633 �m�.
The solution to these two problems could be the use of uni-
form, homeotropically aligned nematics �which has the sim-
plest possible director configuration� in place of the choles-
terics and impose spatial templating of the polymer network
by external means—in particular, by two-beam
interference—to produce a periodic, stationary intensity dis-
tribution that would then lead to a spatially templated pho-
topolymerization process. If a UV laser is used, one could
produce subvisible spacings between polymer walls. The
challenge would be to tune the polymerization process �UV
intensity, exposure protocol� and materials �monomer and
initiator concentrations, relative monomer–liquid-crystal dif-
fusion constants, etc.� in order to ultimately produce sharply
defined walls.
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